La visualisation de données scientifiques connaît une transformation radicale depuis quelques années due à l’accroissement du volume de données et de la puissance de calcul, mais aussi grâce à la prolifération d’outils informatiques permettant l’exploration de ces données. Imaginez pouvoir vous balader dans l’immensité du cosmos, explorer aussi bien l’infiniment petit que l’infiniment grand, sans pour autant vous lever de votre chaise. Vous pourriez, par exemple, découvrir les compositions moléculaires de l’atmosphère de plusieurs planètes révélées par le télescope James Webb. C’est l’objectif ambitieux de Moliverse, un logiciel unifiant la visualisation moléculaire avec la visualisation de phénomènes astrophysiques. Mathis Brossier nous explique ici comment ce logiciel fonctionne et quels sont ces objectifs. Lonni Besançon et Pascal Guitton.
Moliverse [1] est une intégration du logiciel de visualisation moléculaire VIAMD [2] avec le logiciel d’astronomie OpenSpace [3]. Ce mariage permet de représenter des structures moléculaires en contexte avec des corps célestes. Concrètement, Moliverse vous permet de voir, par exemple, la composition gazeuse d’une atmosphère planétaire ou les structures moléculaires dans les traînées de comètes, tout en conservant une vue d’ensemble de l’univers.
Le Contexte Scientifique
Au fil des années, les simulations de dynamique moléculaire ont atteint un niveau de réalisme impressionnant. Cependant, les outils utilisés par les chimistes et biologistes pour visualiser ces simulations restent souvent confinés à une utilisation experte. Des logiciels comme VMD [4], Avogadro [5] ou VIAMD sont essentiels pour les experts, mais manquent de fonctionnalités pour rendre ces données accessibles à un public non spécialiste.
L’idée est donc de rendre plus accessibles ces outils d’experts, pour éduquer et attiser la curiosité du grand public [6, 7]. En combinant la puissance de ces outils avec des environnements immersifs comme les planétariums ou les écrans interactifs, on peut créer des expositions éducatives spectaculaires.
Les Défis Techniques
L’un des défis majeurs de Moliverse est de gérer les échelles extrêmes. Une simple molécule est incroyablement petite, mesurant à peine quelques ångströms (de l’ordre de 0,1 nanomètre), tandis que l’univers observable s’étend sur des millions d’années-lumière (c’est-à-dire des dizaines de milliards de milliards (oui, deux fois) de kilomètres). Il est alors très difficile de percevoir la différence d’échelle entre une molécule et un corps céleste.
Moliverse résout ce problème en utilisant des techniques innovantes de transition d’échelle. Plutôt que de passer de manière linéaire d’une échelle à l’autre, ce qui serait impraticable, Moliverse utilise des encadrements illustratifs qui aident à séparer visuellement les différentes échelles.
De gauche à droite: ① Atmosphère de la Terre à 10km d’altitude ② Nuage de méthane sur Titan ③ Comparaison de molécules organiques ④ Visualisation dans un planétarium.
Application et Impact
L’objectif principal de Moliverse réside dans son application comme outil pédagogique. Imaginez-vous dans un planétarium, où l’on vous montre d’abord les planètes, les étoiles, les galaxies et leurs compositions. Ensuite, la caméra zoome jusqu’à la surface d’une planète, révélant la composition moléculaire de son atmosphère, et la plaçant directement dans le contexte de sa découverte. En changeant de point de vue, on peut voir comment la densité et la composition des gaz changent à différentes altitudes et sur différentes planètes. Par exemple, l’atmosphère terrestre est dense et principalement composée d’azote et d’oxygène, tandis que celle de Mars est beaucoup plus fine et dominée par le dioxyde de carbone.
Un autre usage intéressant de Moliverse est de permettre aux scientiques de visualiser leurs données et leurs simulation de dynamiques moléculaires dans plusieurs environnements, allant de l’ordinateur personnel pour leurs travaux de recherche à des larges écrans ou des planétariums pour de l’enseignement tout en incluant des espaces d’analyses collaboratifs.
Moliverse ouvre la voie à une nouvelle forme de communication scientifique. Les enseignants, chercheurs et vulgarisateurs scientifiques disposent désormais d’un outil pour expliquer des concepts complexes de manière visuelle et immersive. Avec l’arrivée du télescope James Webb et les découvertes qu’il promet, la capacité de Moliverse à montrer des compositions chimiques d’exoplanètes en contexte sera particulièrement précieuse. Pour améliorer cet outil, il convient maintenant d’explorer comment permettre une interaction fluide, naturelle, et efficace [8] entre toutes ces échelles, autant pour les chercheurs lorsqu’ils effectuent leurs recherches, que pour le public lors de démonstrations.
Références
[1] M. Brossier et al., “Moliverse???: Contextually embedding the microcosm into the universe,” Computers & Graphics, vol. 112, pp. 22–30, May 2023, doi: 10.1016/j.cag.2023.02.006.
[2] R. Skånberg, I. Hotz, A. Ynnerman, and M. Linares, “VIAMD: a Software for Visual Interactive Analysis of Molecular Dynamics,” J. Chem. Inf. Model., vol. 63, no. 23, pp. 7382–7391, Dec. 2023, doi: 10.1021/acs.jcim.3c01033.
[3] A. Bock et al., “OpenSpace: A System for Astrographics,” IEEE Trans. Visual. Comput. Graphics, pp. 1–1, 2019, doi: 10.1109/TVCG.2019.2934259.
[4] W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” J Mol Graph, vol. 14, no. 1, pp. 33–38, 27–28, Feb. 1996, doi: 10.1016/0263-7855(96)00018-5.
[5] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J Cheminform, vol. 4, p. 17, Aug. 2012, doi: 10.1186/1758-2946-4-17.
[6] A. Ynnerman, P. Ljung, and A. Bock, “Reaching Broad Audiences from a Science Center or Museum Setting,” in Foundations of Data Visualization, M. Chen, H. Hauser, P. Rheingans, and G. Scheuermann, Eds., Cham: Springer International Publishing, 2020, pp. 341–364. doi: 10.1007/978-3-030-34444-3_19.
[7] S. Schwan, A. Grajal, and D. Lewalter, “Understanding and Engagement in Places of Science Experience: Science Museums, Science Centers, Zoos, and Aquariums,” Educational Psychologist, vol. 49, no. 2, pp. 70–85, Apr. 2014, doi: 10.1080/00461520.2014.917588.
[8] L. Besançon, A. Ynnerman, D. F. Keefe, L. Yu, and T. Isenberg, “The State of the Art of Spatial Interfaces for 3D Visualization,” Computer Graphics Forum, vol. 40, no. 1, pp. 293–326, Feb. 2021, doi: 10.1111/cgf.14189.
Laisser un commentaire