Catégorie : Astronomie

  • Grandes Constellations de Satellites, deuxième partie

    Nous assistons au déploiement de constellations de satellites avec des
    dizaines de milliers de satellites en orbite basse. Les fonctionnalités
    de ces constellations sont essentiellement les télécommunications haut-débit,
    la géolocalisation et l’observation de la Terre. Quelles sont les avancées
    scientifiques et technologiques qui permettent ces développements ?
    Quels sont les enjeux économiques et géostratégiques associés ?
    Ces constellations conduisent à une densification de l’espace et à
    une multiplication des lancements et des débris. Elles ont un impact
    négatif sur sur l’observation astronomique dans le domaine optique et dans
    celui de la radioastronomie. Quels sont les dangers encourus avec la
    multiplication des débris en orbite basse ? Quel est l’impact des lancements
    sur la stratosphère et celui des rentrées de satellites dans l’atmosphère ?
    Un groupe de travail de l’Académie des sciences s’est penché sur le sujet,
    a auditionné de nombreux spécialistes, et publié un rapport en mars 2024,
    rédigé par François Baccelli, Sébastien Candel, Guy Perrin et Jean-Loup
    Puget.
    Les deux premiers auteurs nous éclairent sur le sujet. Serge Abiteboul (qui a
    participé au groupe de travail), voici la deuxième partie de ce partage, après la première.

    Impact sur l’astronomie

    Le lancement de milliers de satellites en orbite basse change fondamentalement l’accès de l’être humain au ciel nocturne. Ses effets se font déjà ressentir pour l’astronomie au sol dans un ensemble de domaines.

    Pour l’astronomie optique (incluant l’infrarouge proche et moyen), le problème principal est celui de la réflexion du flux solaire par les satellites défilant dans le champ de vision des télescopes avec des effets marqués au lever et au coucher du Soleil avec des effets marqués sur la prise d’images par les instruments à grand champ de vue. S’il y a une bonne coopération avec Starlink pour la réduction de la lumière solaire réfléchie par les satellites, le futur est loin d’être sous contrôle avec la multiplication des interlocuteurs et des constellations stratégiques et commerciales.

    Pour la radioastronomie, la perspective d’une perturbation permanente venant par le haut est préoccupante. La politique de sanctuaire radio local (qui consiste à ne pas émettre dans les régions qui hébergent les grands observatoires radio) acceptée par Starlink atténue les problèmes pour les fréquences adjacentes à celles des émissions des satellites. Mais les électroniques des satellites rayonnent aussi à basse fréquence et constituent une source de bruit pour les observations radio dans une autre gamme de fréquences même si les émissions de signaux de télécommunication des satellites sont momentanément interrompues. À cela s’ajoute des besoins de protection des observations en mode interférométrique qui impliquent des installations réparties sur plusieurs continents et nécessitent des actions coordonnées spécifiques.

    Les conséquences négatives pour l’astronomie d’une multiplication incontrôlée de ces constellations doivent impérativement être prises en compte et des mesures pour pallier ces problèmes doivent être mises en œuvre par leurs promoteurs.

    Exemple de traces produites en astronomie optique par 25 satellites Starlink en mai 2019 sur le groupe de galaxies NGC 5353/4. Crédits : V. Girgis/Lowell Observatory

    Impact sur l’environnement

    Dans un contexte de multiplication des lancements, il est important d’examiner la question de l’impact des émissions sur la haute atmosphère. Ces émissions dépendent du type de motorisation, de la masse au décollage et du nombre de lancements. C’est le lanceur Falcon de SpaceX qui réalise actuellement le plus grand nombre de lancements, plus d’une centaine en 2023.

    Les émissions correspondantes de 140 kilotonnes de carbone, de vapeur d’eau, d’hydrocarbures imbrûlés et de particules de suies sont en valeur absolue relativement faibles si on les compare à celles issues des transports mais elles sont cependant non-négligeables car ces émissions vont s’accumuler dans la haute atmosphère. C’est le cas notamment des particules de carbone, désignées sous le nom de “black carbon » (BC), qui sont nettement plus nombreuses par unité de masse de kérosène, dans les gaz éjectés par les moteurs du lanceur, et nettement plus importante que celles qui existent dans les jets des moteurs d’avion (le rapport serait de l’ordre de 104). Comme une partie de ces émissions est faite au-dessus de la tropopause, les aérosols formés par les particules BC peuvent s’accumuler pendant plusieurs années, interagir avec la couche d’ozone, modifier le bilan radiatif et changer la distribution de température. Il y a des incertitudes sur ces effets, car les niveaux d’émissions sont faibles, mais la question de l’impact sur la haute atmosphère mérite d’être approfondie. L’impact sur l’environnement des fins de vie opérationnelle des satellites est lui aussi à prendre en compte même si la masse associée au retour sur Terre de 2400 objets, d’une masse totale de 340 tonnes, reste finalement modérée par rapport aux 15 à 20000 tonnes de météorites qui pénètrent chaque année dans l’atmosphère terrestre.

    Un problème majeur est celui des débris spatiaux. Il y aurait déjà en orbite un demi-million à un million de débris de 1 à 10 cm et cent à cent trente millions de taille entre 1 mm et 1 cm selon l’ESA et la NASA. Sur les 14 000 satellites en orbite, environ 35% ont été lancés au cours de ces trois dernières années et 100 000 autres sont prévus dans la décennie à venir, toujours selon l’ONU. Ces données communiquées – récemment par l’AFP montrent la nécessité de la mise en place d’une régulation contraignante sur le contrôle des fins de vie opérationnelle des satellites.

    Objets catalogués de plus de 10 cm – NASA, 2022

    Nécessité d’un renforcement de la régulation internationale

    L’analyse des impacts négatifs fait apparaître un besoin de régulation internationale d’un domaine qui pour le moment se développe en l’absence de toute contrainte (si ce n’est celle du coût des lancements) et elle souligne la nécessité d’initiatives et d’actions engagées par les parties prenantes pour identifier des principes et des codes de bonnes pratiques qui puissent être adoptés par un nombre croissant de pays. Une autre question importante est celle des solutions techniques permettant de prendre en compte ces impacts négatifs et de se prémunir des scénarios les plus inquiétants. Les règles internationales se construisent par l’identification de principes et de codes de bonne pratique adoptés par un nombre croissant de pays. Plusieurs exemples d’efforts de ce type sont décrits dans le rapport. Il est essentiel que les États et les communautés scientifiques concernées contribuent à la formalisation de ces principes et codes dans le but d’obtenir rapidement une régulation internationale du secteur.

    Constat d’ensemble et perspectives

    Les constellations de satellites ouvrent des perspectives intéressantes, elles offrent des possibilités nouvelles pour les communications, l’observation de la Terre, la géolocalisation et la connectivité et cela, avec des capacités de résilience supérieures à celles des infrastructures terrestres. Sans pouvoir remplacer les réseaux actuels pour l’accès à internet, elles peuvent compléter ces réseaux et assurer une couverture des zones blanches dans lesquelles cet accès n’est pas disponible ou encore permettre des connexions lorsque ces infrastructures sont détruites à la suite de catastrophes naturelles ou de conflits armés. Les constellations de satellites font aussi apparaître des enjeux de souveraineté résultant de la dépendance et de la perte de contrôle induite par la prééminence de certains acteurs privés. L’expansion du nombre et de la taille des constellations pose aussi des questions majeures en matière d’impact sur l’environnement spatial par la densification en satellites et en débris, sur l’environnement atmosphérique par l’augmentation du nombre de lancements et par les retours sur Terre des satellites en fin de vie opérationnelle. Dans un contexte de croissance incontrôlée qui prévaut actuellement, l’augmentation du nombre d’objets en orbite fait que les manœuvres d’évitement deviennent de plus en plus fréquentes et elle conduit à une multiplication du nombre de collisions. L’impact des constellations sur l’astronomie est également préoccupant car il touche à la fois les observations optiques et infrarouges et celles qui sont réalisées dans le domaine radioélectrique. L’analyse des impacts négatifs fait apparaître un besoin de régulation internationale d’un domaine qui pour le moment évolue en l’absence de toute contrainte (si ce n’est celle du coût des lancements) et elle souligne la nécessité d’initiatives et d’actions engagées par les parties prenantes pour identifier des principes et des codes de bonnes pratiques qui puissent être adoptés par un nombre croissant de pays.

    François Baccelli, Inria et Télécom-Paris, membre de l’Académie des sciences et Sébastien Candel, Centrale Supélec, membre de l’Académie des sciences

  • Grandes Constellations de Satellites, première partie

    Nous assistons au déploiement de constellations de satellites avec des
    dizaines de milliers de satellites en orbite basse. Les fonctionnalités
    de ces constellations sont essentiellement les télécommunications haut-débit,
    la géolocalisation et l’observation de la Terre. Quelles sont les avancées
    scientifiques et technologiques qui permettent ces développements ?
    Quels sont les enjeux économiques et géostratégiques associés ?
    Ces constellations conduisent à une densification de l’espace et à
    une multiplication des lancements et des débris. Elles ont un impact
    négatif sur sur l’observation astronomique dans le domaine optique et dans
    celui de la radioastronomie. Quels sont les dangers encourus avec la
    multiplication des débris en orbite basse ? Quel est l’impact des lancements
    sur la stratosphère et celui des rentrées de satellites dans l’atmosphère ?
    Un groupe de travail de l’Académie des sciences s’est penché sur le sujet,
    a auditionné de nombreux spécialistes, et publié un rapport en mars 2024,
    rédigé par François Baccelli, Sébastien Candel, Guy Perrin et Jean-Loup
    Puget.
    Les deux premiers auteurs nous éclairent sur le sujet. Serge Abiteboul (qui a
    participé au groupe de travail) : voici la première partie de ce partage en deux parties.

    Introduction

    Cet article rassemble quelques points clés d’un rapport de l’Académie de sciences. Il traite d’abord des nouvelles fonctionnalités des constellations de satellites dans l’accès à l’Internet, l’observation de la Terre, la géolocalisation, l’interaction avec des objets connectés. Les principaux enjeux et l’évolution du domaine sont analysés dans un premier temps. Comme toute nouvelle avancée technologique, ces constellations soulèvent aussi, de nombreuses questions, et notamment celles relatives à l’encombrement de l’espace, avec l’augmentation du nombre d’objets satellisés et de débris issus de ces objets et de leur lancement, la croissance des collisions qui peut en résulter et d’autre part de l’impact sur les observations astronomiques dans les domaines optiques et radio. Ce rapport met ainsi en évidence un défi majeur, celui de la cohabitation d’une ceinture satellitaire sécurisée et durable évitant la pollution par ses débris et de l’accès au ciel de l’astronomie, la plus ancienne des sciences, celle qui a été à la source des connaissances et qui a encore beaucoup à nous apprendre. Avec la montée en puissance d’acteurs et investisseurs privés dans un domaine qui était initialement réservé aux États, ce rapport fait apparaître des enjeux géostratégiques et des enjeux de souveraineté. Il soutient la mise en place d’une régulation internationale du secteur mais souligne également la nécessité d’une participation de la France et de l’Europe à ces développements.

    Un utilisateur final (U) accède à une station d’ancrage du réseau internet (A) via des satellites

    Les fonctionnalités des constellations

    Les nouvelles constellations de satellites en orbite basse ou moyenne ouvrent des perspectives dans trois grands domaines qui sont les communications haut-débit, l’observation de la Terre et la géolocalisation. Les constellations offrant le haut-débit sont encore peu nombreuses mais elles impliquent, pour certaines, un très grand nombre de satellites. Les constellations destinées à l’observation de la Terre ou à la géolocalisation comportent un nombre plus réduit de satellites mais sont bien plus nombreuses. Il est à remarquer, cependant, qu’en ce qui concerne l’accès haut-débit à l’Internet, les réseaux à base de constellations ne pourront remplacer les réseaux terrestres mais qu’ils devraient plutôt offrir un complément notamment pour la couverture des zones blanches et des territoires enclavés ou encore pour la couverture haut-débit des navires et des avions.

    Des protocoles pour les communications entre satellites en orbites basses sont en cours de normalisation. Ceci pourrait conduire à terme à un cœur de réseau Internet spatial avec des fonctionnalités et des mécanismes de routage propres à la dynamique des constellations. Certaines fonctions qui sont actuellement celles des routeurs Internet et des stations de base de la 5G pourraient à terme devenir des fonctions embarquées dans les satellites de cet Internet spatial, comme par exemple le traitement du signal, le routage ou même le calcul en périphérie de réseaux (edge computing). Cet Internet spatial a cependant des limites associées à la puissance électrique disponible à bord des satellites, qui est elle-même fonction de la surface des panneaux solaires qui peuvent être embarqués sur lanceurs et déployés dans l’espace.

    Enjeux

    Une question clé, dans le domaine des télécommunications, est celle du contrôle de ces nouvelles classes de réseaux. On note par exemple que les réseaux de communications fondés sur des flottes de satellites, s’affranchissent de fait, sinon de droit, de toutes les règles qui sont imposées par les États aux opérateurs des réseaux terrestres offrant des services sur leur sol. Cette perte de contrôle concerne tous les aspects les plus fondamentaux : les mécanismes d’attribution des fréquences, les règles de confidentialité sur les conversations ou les données transmises, les règles de localisation des cœurs de réseaux, etc. Dès aujourd’hui, ces réseaux peuvent se passer complètement de stations d’ancrage dans les pays qu’ils couvrent. Le déploiement de ces réseaux dans leurs formes actuelles (typiquement celle de la constellation Starlink) induit une perte de souveraineté directe des États sur ce secteur.

    Une seconde question a trait au modèle économique des grandes constellations destinées à la couverture internet haut-débit. On sait, en effet, que les entreprises qui se sont engagées dans la mise en place des premières constellations de ce type ont toutes fait faillite et il n’est pas certain que les constellations déployées aujourd’hui puissent atteindre l’équilibre économique et devenir viables à long terme. La réponse à cette seconde question dépendra sans doute des résultats de la course actuelle à l’occupation de l’espace ainsi que de la nature des interactions et accords entre ces réseaux satellitaires et les réseaux terrestres de type 5G. Elle dépendra aussi de l’évolution de la taille et du prix des antennes permettant à un utilisateur final muni d’un téléphone portable de communiquer efficacement avec un satellite.

    Les enjeux en termes de souveraineté apparaissent ainsi comme les raisons les plus fortes pour le développement de ces constellations car ces dernières procurent à ceux qui les contrôlent un moyen de communication haut-débit sécurisé à faible latence qui est aussi caractérisé par sa résilience. Cette résilience vient du fait que les flottes de satellites restent en grande partie fonctionnelles en cas de catastrophe naturelle et de destruction des réseaux terrestres. Elles sont par ailleurs difficiles à détruire puisque constituées de nombreuses plateformes en mouvement rapide dans des flottes organisées de façon fortement redondante. La latence faible des constellations en orbite basse joue un rôle central dans le contexte du temps réel critique car leur couverture universelle permet l’observation instantanée d’événements survenant en tout point de la planète et elle offre de nouveaux moyens d’interaction.

    Évolution dans le temps du nombre des satellites en fonction de l’altitude entre 200 et 2000 km (CNES).

    Évolution du domaine

    Le domaine dans son ensemble est dans une phase très dynamique avec beaucoup d’innovations dans le domaine industriel, une expansion rapide du NewSpace aux États-Unis, une volonté au niveau de la Commission Européenne de lancer une constellation, l’émergence de nouveaux États spatiaux et d’acteurs privés, de nouveaux formats de lanceurs (petits lanceurs, lanceurs réutilisables), une réduction des coûts de lancement associée notamment à la réutilisation. Il en résulte une multiplication des projets de constellations et une explosion du nombre des satellites en orbite basse ou moyenne.

    Cette dynamique repose sur des progrès scientifiques et des innovations technologiques dans le domaine des télécommunications, de l’informatique du traitement de l’information, de la focalisation dynamique, de l’électromagnétisme et des communications radio, des systèmes de communication optiques inter-satellites, de la miniaturisation de l’électronique embarquée, des systèmes de propulsion à bord des satellites (propulsion plasmique) ainsi que sur des avancées dans l’accès à l’espace, les télécommunications et l’informatique. Cette dynamique exploite les résultats des recherches dans le domaine des communications portant notamment sur (i) la théorie de l’information multi-utilisateurs, sur le codage pour la maîtrise de liens radio avec les satellites, avec des questions nouvelles comme par exemple celle de la focalisation adaptative des antennes (MIMO massif et dynamique) ou encore celle du contrôle des interférences ; (ii) la définition de nouveaux protocoles de routage adaptés à la dynamique très rapide du graphe des satellites et des stations d’ancrages ; (iii) l’identification d’architectures optimales pour les fonctionnalités de haut débit ou d’observation dans un ensemble de régions donné de la Terre.

    François Baccelli, Inria et Télécom-Paris, membre de l’Académie des sciences et Sébastien Candel, Centrale Supélec, membre de l’Académie des sciences

  • Le soleil chante pour Hélène

    Un nouvel « Entretien autour de l’informatique ». Hélène Barucq, Directrice de recherche Inria, spécialiste de la simulation numérique de la propagation des ondes sismiques. Hélène Barucq est responsable de l’équipe Magique-3D sur le calcul scientifique en géophysique, commune à  Inria et au département de Mathématiques Appliquées de l’Université de Pau. Elle nous parle des profondeurs de la Terre, de celles du soleil, et d’acoustique musicale. Un coup d’œil passionnant sur un domaine aux frontières des maths, de la physique et de l’informatique.

    binaire Comment es-tu devenue chercheuse en mathématiques appliquées ?

    HB – Je suis un produit pur jus de l’université. J’ai fait la fac de maths à Bordeaux. J’ai été tentée par l’informatique, mais mes premiers cours m’en ont un peu dégoutée. Et puis, j’ai « rencontré les ondes » dans un projet avec le CEA et Bernard Hanouzet, et comme le sujet m’a conquise,  j’ai choisi ce domaine pour ma thèse sous sa responsabilité. Je découvrais des dialogues fantastiques entre physique et mathématiques, et dans le même temps le plaisir du travail en équipe.  J’ai changé alors d’avis sur l’informatique. C’est passionnant d’expliquer des phénomènes physiques avec des équations mathématiques. Mais c’est encore plus génial, cela prend vraiment son sens pour moi, quand on transforme les équations, les modèles mathématiques, en programmes informatiques. En réalisant des simulations numériques assistées de méthodes de visualisation avancées, on peut alors voir un phénomène physique pour finalement en comprendre les moindres détails.

    J’ai obtenu un poste de Maitre de conférence à l’Université de Pau, un peu par chance. C’est là que j’ai commencé à travailler sur des sujets concrets, dans une collaboration avec Total. Et puis j’ai découvert Inria, et obtenu un poste de chercheuse dans l’institut. Cela m’a permis de monter une équipe à Pau. Je me dis parfois que j’aurais aussi bien pu devenir informaticienne parce que les logiciels me fascinent. Aujourd’hui, j’adore mon travail.

    binaire – Nous avons entendu dire qu’une de tes caractéristiques, c’est la fidélité ?

    HB – Oui ! Je suis toujours à Pau, toujours à Inria. Certaines de mes collaborations durent depuis des années ! Par exemple, je travaille depuis bientôt vingt ans avec Total et Henri Calandra. Nos objectifs ont bien évidemment évolué au cours de ces années, nous conduisant à travailler sur des sujets très variés. Aujourd’hui, nous travaillons ensemble sur des questions liées à la transition énergétique. Surtout, je suis restée fidèle au domaine, les équations des ondes. Bien sûr, j’enrichis sans cesse le groupe de gens avec qui je collabore ; ils deviennent souvent des amis. Et pour les ondes, je considère de nouvelles applications, de nouveaux défis.

    binaire – Justement. Il est peut être temps que tu expliques au lectorat de binaire, pour qui cela reste peut être mystérieux, ce que sont les ondes, en quoi consiste ton travail de chercheuse dans ce domaine.

    HB – Quand une perturbation physique se produit, elle génère une onde qui se propage en modifiant les milieux qu’elle traverse. Quand on jette un caillou dans l’eau, ça crée une onde à la surface. Quand on pince la corde d’une guitare, cela génère une onde acoustique que les êtres humains à proximité ressentent avec des capteurs situés dans l’oreille. Il existe différents types d’ondes comme les ondes mécaniques qui se propagent à travers une matière physique qui se déforme, ou les ondes électromagnétiques et gravitationnelles qui elles n’ont pas besoin d’un tel milieu physique.

    Les études du sol

    Figure 1 : simulation de la propagation d’une onde acoustique harmonique dans un milieu terrestre sur un domaine de taille 20 x 20 x 10 kilomètres cubes.

    binaire – Ça paraît un peu magique. Pourrais-tu nous expliquer un peu plus en détail comment cela se passe pour l’étude du sous sol. Surtout, nous aimerions comprendre la place des mathématiques et de l’informatique là dedans ?

    HB – Supposons que nous voulions cartographier un sous sol pour découvrir des réservoirs d’eau pour de la géothermie. On pourrait faire des forages sans modélisation préalable ; c’est coûteux et ça peut être dangereux : on a vu des forages causer des éboulements très loin de l’endroit où ils étaient réalisés. Plutôt que faire ça, on va utiliser, par exemple, un camion qui vibre en cadence et génère des ondes. Les ondes se propagent dans le sol en gardant des traces de ce qu’elles rencontrent. Pour cartographier le sous-sol, on aimerait découvrir les discontinuités dans la composition de ce sous-sol, et ce qui se trouve entre elles. Pour ça, on va mesurer avec des capteurs les ondes réfléchies et analyser ces données.

    Cela demande de développer des modèles mathématiques et des méthodes numériques avancées. Cela demande aussi des calculs considérables souvent réalisés de manière parallèle pour obtenir des simulations précises. En particulier, la détermination des paramètres physiques est un problème d’optimisation qui n’est pas simple car il admet des optimums locaux qui peuvent ralentir voire empêcher la méthode de converger.

    Mais on peut faire des trucs sympas. Par exemple, quand un train roule, les frottements sur les rails génèrent des ondes sonores, « tougoudoum, tougoudoum… ». En analysant ces sons, on imagine bien qu’on peut détecter des malformations des rails, des traverses ou du ballast. En Chine, une équipe travaille même à faire des reconstitutions des propriétés du sous sol à partir des ondes générées par un train. Juste en analysant le son du train !

    Il existe des tas d’autres applications de ce type d’analyse. Par exemple, en médecine, l’analyse de la propagation d’une onde sonore peut donner des indications sur la présence d’une tumeur, et le même principe peut être appliqué pour réaliser une échographie.

    Figure 2 : imagerie sismique par inversion des formes d’ondes : en partant d’un milieu initial représentant le sous-sol (en haut), l’algorithme de minimisation itérative reconstruit un milieu (en bas à gauche) qui permet de reproduire les mesures. Dans cet exemple synthétique, le modèle sous-terrain est connu et représenté en bas à droite.

    binaire – Quels sont les freins de tels travaux ?

    HB – Le principal frein est que souvent les données sont très bruitées. Pour reprendre l’analogie du cambrioleur, c’est comme si la pluie avait presque effacé les empreintes.

    Un autre frein tient dans les besoins de calcul considérables exigés par la simulation. Si vous voulez cartographier un sous-sol dans un cube de 5km d’arête, c’est véritablement des calculs massifs. On peut chercher de manière brutale à faire de plus en plus de calculs mais on atteint vite des limites. On peut aussi essayer d’être astucieux avec les mathématiques ou la simulation. Dans un travail récent, par exemple, nous séparons un grand volume en petits blocs que nous analysons séparément ; ensuite nous « recollons » les morceaux. On pourrait utiliser des bases de données de petits blocs comme ça, et des techniques de machine learning. Il faut essayer d’éviter la force brute, penser autrement.

    binaire – Mais beaucoup de ces recherches viennent d’entreprises qui ne voudront pas mettre leurs données, des données qui coûtent cher à produire, à la disposition de tous. Par exemple, est-ce que l’industrie pétrolière accepterait ?

    HB – Bien sûr, la recherche de pétrole a été longtemps un moteur du domaine. Mais les temps changent, ce n’est plus le cas. Et même dans des entreprises comme Total qui est très active sur les sujets d’environnement, le partage de données n’est pas exclu.

    Les études du soleil

    Figure 3 : spectre de puissance solaire correspondant à la propagation d’ondes acoustiques dans le soleil en fonction de la fréquence et du mode.

    binaire – Sur quoi portent principalement tes travaux aujourd’hui ?

    HB – Je travaille sur l’héliosismologie, l’étude du soleil. Le soleil chante en permanence. Il produit des ondes acoustiques, des ondes à basse fréquence, avec une longue période, que l’on peut détecter par effet Doppler. Leur étude pourrait nous permettre de remonter à l’intérieur du soleil. En comprenant comment il est construit, on espère apprendre à prévoir les irruptions solaires qui peuvent être dangereuses notamment pour nos satellites.

    On dispose déjà de cartographies du soleil, on peut même en trouver sur internet. Mais on les aimerait beaucoup plus détaillées. Il faut bien voir la difficulté : le soleil n’a pas de surface comme la terre. La vitesse du son augmente avec la profondeur, tout est en permanence en mouvement.

    Ce qui est intéressant pour nous c’est que les méthodes mathématiques à développer reposent sur les mêmes concepts que celles que nous utilisons dans le cadre de la propagation d’ondes dans le sol. Par contre, la physique est différente, plus complexe, par exemple, elle doit tenir compte du champ magnétique.

    L’acoustique musicale

    Figure 4 : le module du champ acoustique au sein d’une trompette en fonction de la fréquence.

    binaire – Ton équipe travaille aussi sur l’acoustique musicale.

    HB – Nous avons recruté il y a quelques années Juliette Chabassier qui, dans sa thèse, avait synthétisé le son du piano grâce aux mathématiques. Elle aurait pu travailler avec nous uniquement en Géosciences mais elle aurait été malheureuse car elle est véritablement passionnée par l’acoustique musicale. Nous l’avons plutôt laissée nous transmettre sa passion.

    Dans l’équipe, avec Juliette, nous travaillons maintenant avec un luthier. Nous cherchons à reconstituer le son d’instruments à vent anciens, de vieux hautbois. Encore une histoire d’ondes. Ce qui est drôle, c’est que nous pouvons partager les équations, les méthodes, les algorithmes. Ce n’est bien sûr pas du tout la même chose. Les problèmes que nous étudions en acoustique musicale sont en une seule dimension, quand nous travaillons en dimension 3 avec la terre ou le soleil. Donc cela demande a priori moins de puissance de calcul. Mais la prise en compte du musicien introduit de la difficulté. Et, d’un autre coté, les problèmes rencontrés en acoustique sont « non-linéaires » et nous donnent l’occasion de tester de nouvelles méthodes, plus complexes.

    binaire – Un mot de conclusion, peut-être ?

    HB – Les jeunes que nous voyons arriver dans l’équipe viennent le plus souvent d’écoles d’ingénieur. Ce sont souvent des matheux brillants. Mais ils sont également fans de programmation et de calcul parallèle, un peu « geeks ». Historiquement, on sépare l’informatique et les maths applis, par exemple, dans les sections 26 et 27 du CNU (*) ; eux, on a du mal à les situer. Je dirais, en plaisantant, qu’ils sont, un peu comme nos sujets de recherche, dans la section 26.5.

    Nous vivons dans un monde numérique où l’informatique et les maths applis prennent un rôle considérable pour expliquer le monde, la société, pour les transformer. J’aimerais que tous les jeunes prennent vraiment conscience de ça, quelle que soit la profession à laquelle ils se destinent.

    Il faudrait aussi que les scientifiques soient plus écoutés. Et pour cela, il faut qu’ils fassent l’effort de se faire mieux comprendre. Ce n’est pas simple d’expliquer sur le papier des équations au grand public. N’essayez pas ! On perd tout de suite son auditoire. Par contre, on peut faire des simulations et capturer les phénomènes avec des images, des courbes, des vidéos. Ça, tout le monde peut comprendre !

    Serge Abiteboul, Inria et ENS, Paris, Pascal Guitton, Inria et Université de Bordeaux

    (*) Le CNU, Conseil national des universités, est chargée en particulier de la gestion de la carrière des enseignants-chercheurs.

    Remerciements à Florian Faucher (Post-doc, Université de Vienne) qui a réalisé les trois premières illustrations.

  • Le climat dans un programme informatique ?

    Entretien autour de l’informatique : Olivier Marti, climatologue

    Selon l’Agence américaine océanique et atmosphérique et la Nasa, l’année 2014 a été la plus chaude sur le globe depuis le début des relevés de températures en 1880. (Voir l’article de l’Obs). Depuis les débuts de l’informatique, la climatologie se nourrit des progrès de l’informatique et du calcul scientifique, et en même temps leur propose sans cesse de nouveaux défis. Dans un entretien réalisé par Christine Froidevaux et Claire Mathieu, Olivier Marti, climatologue au Laboratoire des  Sciences du Climat et de l’Environnement, explique ses recherches en calcul scientifique et développement de modèles pour la climatologie, un domaine exigeant et passionnant.

    Cet entretien parait simultanément en version longue sur le blog Binaire et en raccourcie sur 01Business.

    OlivierMarti_3Olivier Marti

    Le métier de climatologue

    B : Qu’est-ce qui vous a amené à travailler en climatologie ?
    OM : Dans ma jeunesse, j’ai fait de la voile. J’avais une curiosité pour la mer et un goût pour la géographie. J’ai choisi de faire l’ENSTA pour faire de l’architecture navale. Là, j’ai choisi l’environnement marin (aspect physique, pas biologie), et j’ai fait une thèse en modélisation, sur les premiers modèles dynamiques de  l’océan ; au début, on ne parlait pas beaucoup de climatologie, ça s’est développé plus tard. Il y a un aspect pluridisciplinaire important, ma spécialité étant la physique de l’océan. J’ai ensuite été embauché au CEA et ai travaillé sur les climats anciens. Par exemple, l’étude du climat du quaternaire amène à étudier l’influence des paramètres orbitaux sur le climat.

    B : En quoi consiste votre métier ?
    OM : Je fais du développement de modèle. Il faut assembler des composants : un modèle d’océan, un modèle d’atmosphère etc. pour faire un modèle du climat. Mais quand on couple des modèles, c’est-à-dire, quand on les fait évoluer ensemble, on rajoute des degrés de liberté et il peut y avoir des surprises. Il faut qu’informatiquement ces objets puissent échanger des quantités physiques. C’est surtout un travail empirique. On réalise beaucoup d’expériences en faisant varier les paramètres des modèles. C’est vrai aussi que depuis 25 ans, on se dit qu’il faudrait pousser plus loin les mathématiques (convergence numérique, stabilité, etc.), marier calcul scientifique et schémas numériques. En climatologie, on n’a pas accès à l’expérience, c’est mauvais, du point de vue de la philosophie des sciences. On peut faire quelques expériences en laboratoire, mettre une plante sous cloche avec du CO2, mais on n’a pas d’expérience pour le système complet. La démarche du laboratoire est donc de documenter l’histoire du climat. Il y a d’abord un travail de récolte et d’analyse de données, puis une phase de modélisation : peut-on mettre le “système Terre” en équations ?

    B : Allez-vous sur le terrain?
    OM : J’y suis allé deux fois. En général, on fait en sorte que les gens qui manipulent les données sur l’ordinateur aient une idée de comment on récolte ces données, pour qu’ils se rendent compte, par exemple, qu’avoir 15 décimales de précision sur la température, c’est douteux. J’ai fait une campagne en mer, de prélèvement de mesure d’eau de mer et d’éléments de biologie marine. Lors des campagnes en mer, la plupart des analyses se font en surface sur le bateau : on a des laboratoires embarqués sur lesquels on calibre le salinomètre, etc. J’ai aussi fait une campagne dans le désert du Hoggar, pendant une semaine, pour récolter les sédiments lacustres (il y a 6000 ans, là-bas, il y avait des lacs). Récolter les pollens qui sont dans les sédiments, ça exige des procédés chimiques un peu lourds, donc on ne le fait pas sur place.

    Hoggar-Grenier-230Collecte de données dans le Hoggar

    B : Qu’est-ce qui motive les chercheurs en climatologie ?
    OM : Il n’y a pas un seul profil, car c’est pluridisciplinaire. Chez nous, il y a des gens qui viennent de la dynamique des fluides et d’autres de l’agronomie. Ce n’est pas forcément facile de travailler ensemble ! Les gens qui font du calcul scientifique, quand ils arrivent, n’ont pas de compétences en climatologie, mais en travaillant sur les climats, ils ont l’impression d’être plus utiles à la société que s’ils développaient un logiciel pour faire du marketing par exemple. Ils participent à un projet d’ensemble qui a un rôle dans la société qui est positif, et c’est motivant.

    B : Quels sont les liens de votre domaine avec l’informatique ?
    OM : On évite d’utiliser le mot « informatique », car cela regroupe des métiers tellement différents. L’informatique en tant que discipline scientifique est bien sûr clairement définie, mais assez différemment de son acception par l’homme de la rue. Nous parlons de calcul scientifique. L’équipe que je dirigeais s’appelle d’ailleurs CalculS. Dans ma génération, si des personnes telles que moi disaient qu’elles faisaient de « l’informatique », elles voyaient débarquer dans leur bureau des collègues qui leur demandaient de “débugger » les appareils. Il y avait une confusion symptomatique et j’aurais préféré que le mot «informatique» n’existe pas. La Direction Informatique du CEA regroupait bureautique et calcul scientifique. Maintenant au contraire, le calcul scientifique ne dépend plus de la direction informatique. Les interlocuteurs comprennent mieux notre métier. Notre compétence n’est pas le microcode, et nous ne savons pas enlever les virus des ordinateurs.

    Développer des modèles

    B : Utilisez-vous des modèles continus ou discrets ?
    OM : Les zones géographiques sont représentées par une grille de maille 200 km (l’océan a une grille plus fine). Le temps, qui est la plus grande dimension, est discret, et on fait évoluer le système pas à pas. Il faut entre 1 et 3 mois pour simuler entre 100 et 1000 ans de climat. On ne cherche pas à trouver un point de convergence mais à étudier l’évolution… On s’intéresse à des évolutions sur 100 000 ans ! Il y a des gens qui travaillent sur le passé d’il y a 500 millions d’années, et d’autres sur le passé plus récent. Nous, on essaie de travailler sur le même modèle pour le passé et pour le futur. Donc, par rapport aux autres équipes de recherche, cela implique qu’on n’ait pas un modèle à plus basse résolution pour le futur et un autre à plus haute résolution pour le passé. L’adéquation des modèles sur le passé est une validation du modèle pour le futur, mais on a une seule trajectoire du système – une seule planète dont l’existence se déroule une seule fois au cours du temps. Nos modèles peuvent éventuellement donner d’autres climats que celui observé, et cela ne veut pas forcément dire qu’ils sont faux, mais simplement qu’ils partent d’autres conditions initiales. On peut faire de la prévision climatique, mais on ne peut pas travailler sur des simulations individuelles, il faut étudier des ensembles. En particulier, les effets de seuil sont difficiles à prédire. On a besoin de puissance de calcul.

    B : Dans votre domaine, y a-t-il des verrous qui ont été levés ?
    OM : Cette évolution a eu lieu par raffinements successifs. Maintenant on sait que ce sont plutôt les paramètres orbitaux qui démarrent une glaciation, mais que le CO2 joue un rôle amplificateur, et on ne comprend pas complètement pourquoi. On se doute qu’aujourd’hui le climat glaciaire s’explique en partie parce que l’océan est capable de piéger plus de CO2 en profondeur, et je travaille en ce moment pour savoir si au bord du continent antarctique, où l’océan est très stratifié, on peut modéliser les rejets de saumure par la glace de mer ; on essaie de faire cette modélisation dans une hiérarchie de modèles pour voir s’il y a une convergence, ou pour quantifier tel phénomène qu’on n’avait pas identifié il y a 30 ans et qui joue un rôle majeur. L’effet  de la saumure est variable selon qu’elle tombe sur le plateau continental ou non. Pour modéliser ces effets, il faut représenter la topographie du fond marin de façon fine, mais là on tombe sur un verrou, parce qu’on ne sait pas modéliser le fond de l’océan. On alterne les simulations longues à basse résolution simplifiée des rejets de sel, avec les modèles à plus haute résolution. Il y a des verrous qui sont levés parce qu’on sait faire des mesures plus fines au spectromètre et parce que la puissance de calcul augmente.

    B : Dans dix ou vingt ans, qu’est-ce que vous aimeriez voir résolu?
    OM : D’une part, en tant qu’océanographe, j’aimerais comprendre toute la circulation au fond de l’océan – c’est quelque chose de très inerte, de très lent, sauf quelques courants un peu plus rapides sur les bords. Il y a des endroits de l’océan qui sont très isolés à cause du relief. Je voudrais des simulations fines de l’océan pour comprendre son évolution très lente. On progresse, et un jour ce sera traité à des échelles pertinentes pour le climat.
    D’autre part, dans l’atmosphère, on tombe sur d’autres problèmes – ainsi, les grands cumulo-nimbus tropicaux, ce sont des systèmes convectifs. Quand on a une maille à 100 km, on essaie d’en avoir une idée statistique. Quand on a une maille à 100 m, on résout ces systèmes explicitement. Mais entre les deux, il y a une espèce de zone grise, trop petite pour faire des statistiques mais trop grande pour faire de la résolution explicite. Dans 50 ans, on pourra résoudre des systèmes convectifs dans des modèles du climat. On commence à avoir la puissance de calcul pour s’en rapprocher.
    Plus généralement c’est un exercice assez riche que de prendre des phénomènes à petite échelle et d’essayer de les intégrer aux phénomènes à grande échelle géographique, pour voir leur effet. L’écoulement atmosphérique est décrit par les équations de Navier-Stokes mais on ne peut pas résoudre toute la cascade d’effets vers les petites échelles, alors on fait de la modélisation. On se dit : il doit y avoir une certaine turbulence qui produit l’effet observé sur l’écoulement moyen. On observe les changements de phase, et il y a tout un travail pour essayer de modéliser cela correctement.
    Mais c’est très difficile, dans les articles scientifiques, quand quelqu’un a fait un progrès en modélisation, de le reproduire à partir de l’article – d’une certaine façon, cette nouvelle connaissance est implicite. L’auteur vous donne ses hypothèses physiques, ses équations continues, mais ne va pas jusqu’à l’équation discrète et à la façon dont il a codé les choses, ce qui peut être une grosse partie du travail. On commence désormais à exiger que le code soit publié, et il y a des revues dont l’objectif est de documenter les codes, et dont la démarche est de rendre les données brutes et les codes disponibles. Sans le code de l’autre chercheur, vous ne pouvez pas reproduire son expérience. Mais ce sont là des difficultés qui sont en voie de résolution en ce moment.

     compterUn supercalculateur

    Les super-calculateurs sont de plus en plus complexes à utiliser.

    Dans mon travail, je suis plutôt du côté des producteurs de données. Il y a des climatologues qui vont prendre les données de tout le monde et faire des analyses, donc vous avez un retour sur vos propres simulations, ce qui est extrêmement riche. C’est très intéressant pour nous de rendre les données disponibles, car on bénéficie alors de l’expertise des autres équipes. Cela nous donne un regard autre sur nos données. D’ailleurs, il y a  une contrainte dans notre domaine : pour les articles référencés dans le rapport du GIEC, les données doivent obligatoirement être disponibles et mises sous format standard. C’est une contrainte de garantie de qualité scientifique.

    B : Y a-t-il libre accès aux données à l’international ?
    OM : Tous les 6 ou 7 ans, le rapport du GIEC structure les expériences et organise le travail à l’international. Il y a eu une phase, il y a 10 ans, où on  voulait rassembler toutes les données dans un lieu commun, mais ce n’est pas fiable, il y a trop de données. Maintenant on a un portail web (ESGF) qui permet d’accéder aux données là où elles sont. Les gens peuvent rapatrier les données chez eux pour les analyser mais quand il y a un trop gros volume, pour certaines analyses, ils sont obligés de faire le travail à distance.

    B : Parlons du « déluge de données, du big data. Vous accumulez depuis des années une masse considérable de données. Il y a aussi des problèmes pour les stocker, etc.
    OM : Le big data, pour nous, c’est très relatif, car il y a plusieurs ordres de grandeur entre les données que nous avons et ce qu’ont Google ou Youtube par exemple. 80% du stockage des grands centres de la Recherche publique est le fait de la communauté climat-environnement. Notre communauté scientifique étudie la trajectoire du système, pas l’état à un seul instant. Il y a des phénomènes étudiés sur 1000 ans pour lesquels on met les données à jour toutes les 6 heures (les gens qui étudient les tempêtes par exemple). Mais c’est vrai que le stockage devient un problème majeur pour nous. GENCI finance les calculateurs, mais ce sont les hébergeurs de machines, le CNRS etc., qui financent les infrastructures des centres.

    B : Qu’est-ce que les progrès de l’informatique ont changé dans votre domaine, et qu’est-ce que vous pouvez attendre des informaticiens ?
    OM : Il y a une plus grande spécialisation. Lorsque j’étais en thèse, un jeune doctorant avait les bases en physique, mathématiques et informatique pour écrire un code qui tournait à 50% de la puissance de la machine. On n’avait pas besoin de spécialiste en informatique. Les physiciens apprenaient sur le tas. Maintenant l’évolution des machines fait qu’elles sont plus difficiles à programmer en programmation parallèle pour avoir un code pertinent et performant, et du coup  les physiciens doivent collaborer avec des informaticiens. Les super-calculateurs sont de moins en moins faciles à utiliser.  En ce qui concerne la formation, les jeunes qui veulent faire de la physique, et arrivent en thèse pour faire de la climatologie ne sont pas du tout préparés à utiliser un super-calculateur. Ils commencent à être formés à Matlab et à savoir passer des équations à des programmes, mais quand on met entre leurs mains un code massivement parallèle en leur disant de modifier un paramètre physique, on a vite fait de retrouver du code dont la performance est divisée par 10, voire par 100 ! On a besoin de gens  qui comprennent bien l’aspect matériel des calculateurs, (comprendre où sont les goulots d’étranglement pour faire du code rapide), et qui sachent faire des outils pour analyser les endroits où ça ralentit. En informatique, les langages de programmation ont pris du retard sur le matériel. Il y a un travail qui est très en retard, à savoir, essayer de faire des langages et compilateurs qui transforment le langage du physicien en code performant. Il faut beaucoup d’intelligence pour masquer cette complexité à l’utilisateur. Aujourd’hui c’est plus difficile qu’il y a vingt ans.

    B : Votre travail a-t-il des retombées sociétales ou économiques ?
    OM : Nos docteurs sont embauchés chez les assureurs, cela doit vouloir dire que notre travail a des retombées pour eux ! Il y a aussi EDF qui s’intéresse à avoir une vision raisonnable de ce que sera le climat pour l’évolution des barrages, l’enfouissement des déchets nucléaires, etc. Mais, la « prévision du climat », on en a horreur : nous, on fait des scénarios, mais on ne peut pas maîtriser, en particulier, la quantité de gaz à effet de serre qui seront rejetés dans l’atmosphère par l’homme. On fait des scénarios et on essaie d’explorer les climats possibles, mais on évite de parler de prévisions. On participe vraiment à la collaboration internationale pour essayer de faire des scénarios climatiques. Il y a une partie validation – la partie historique, instrumentale, bien documentée, qui permet de voir quels sont les modèles qui marchent bien – et une partie où on essaie de comprendre ce qui ne marche pas. Il y a toute une problématique de mathématiques et statistiques pour l’évolution dans le futur.

    B : Y a-t-il beaucoup de femmes chercheurs dans votre domaine?
    OM : Cela dépend de ce qu’on appelle « mon domaine ». Dans le laboratoire, il y a un bon tiers de femmes. Mais c’est qu’on est dans les sciences de la Terre. En biologie, il y en a plus de la moitié. Dans les sciences dures, en physique, il y en a moins. Dans les réunions de climatologues, il y a environ un tiers de femmes. Mais dès qu’on est dans une réunion d’informaticiens la proportion chute à moins de 10%. C’est extrêmement frappant. Il y a plus de femmes, mais dans la partie informatique et calcul scientifique, cela ne s’améliore pas beaucoup.

    B : Y a-t-il autre chose que vous aimeriez ajouter?
    OM : Il faut faire attention de distinguer modélisation et simulation. Nous, on fait de la modélisation : on commence par faire un modèle physique, puis on discrétise pour faire un modèle numérique, puis on fait du code. La simulation c’est ce que vous faites une fois que vous avez le code, le modèle informatique.

    Olivier Marti, CEA, Laboratoire des Sciences du Climat et de l’Environnement

    DemarcheSimulationLa démarche itérative de la simulation